If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+8y-9=0
a = 3; b = 8; c = -9;
Δ = b2-4ac
Δ = 82-4·3·(-9)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{43}}{2*3}=\frac{-8-2\sqrt{43}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{43}}{2*3}=\frac{-8+2\sqrt{43}}{6} $
| (6+h)(6+h)(6+h)=0 | | X(6x-2)=(6x+5)(x-2) | | 1/3g+2/1=0 | | 7x-9=13+14x | | 8/3b=4/3 | | 5x+16=2(x-1) | | 4z/16=-6 | | 2+7.50b=8+6b | | |x-6|=19 | | 5y-31=79 | | 3x-48=12 | | 1.1x+4.3=6.2 | | -4+2x=x-1 | | 1/4(x-3)=x+1.5 | | (3x^2+2x+5)/(2x^2+3x-3)=0 | | 1/3*g+4=2 | | Z2+3z-18=0 | | 9(x+7)=5+9x | | 9x^2+x+5=36 | | 9(x+7)=+9x | | Z²+3z-8=0 | | 2/5x+2=0 | | —4+2x=-x-1 | | -12.3=7.7-5y | | -9x^2+x+5=36 | | (-9x^2)+x+5=36 | | -10p+20=-2-15p+7p | | 34=-3y+5(y+8) | | 3+5(2x-1)=4(2x-3) | | X+18=2x+14 | | 3x-2+2x=x+14 | | 109+-4c=73 |